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Abstract

- Let I Dbe a finite geometric lattice of rank r and for
wi{x)

~

1 =0, 1, ¢ee, r, let Wi-’/ denote the number of elements of L with

rank i. For l_<_ _<_4vr‘- 2, we have

<. or

Jdl+w2+... +wk<w k+"'*wr2+wr-1

A/' _\,“,» 4 she ‘<<,_—_: / _/‘\’_. ‘—LL!'*',

e s e

with equality if and only if the lattice L is modular. We give

two further results concerning matchings of lattice elements of rank

\_S./k into those of rank _>_‘r - k, and observe that a middle term can

A
be interpolated in the above inequality.
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l. Introduction

For a finite geometric lettice L of rank r, we denote the

number of lattice elements of rank i by W, = wi(L). Wy Wop eee, W

are the Whitney numbers of the second kind. Of course, wo o 1.

There are several interesting conjectures concerning the Whitney
numbers of geometric lattices. Foremost among these is the unimodality

conjecture of G.-C. Rota which asserts that wJ > min{wi,wk? whenever

1 < J <k. This is known to be true for partition lattices {9}, f11].

whenever k 5 lr in a

Another conjecture asserts that W, < wr_ 5

k k

geometric lattice of rank r. This would imply that Wo SW, SV, < eee < w[gr
2

(by applying the above conjecture to truncations of the lattice). All
of these conjectures are valid for geometric lattices with at most
eight points [2) and "perfect matroid designs" [13].

In [1], Kelly and Basterfield proved that W

lswr-

1 for geometric

lattices of rank r. Another proof is given by C. Greene [7] who added

the result that Wl = "r-l holds if and only if the lattice is modular

and also gave several results concerning the matching of the points
into the copoints. A third proof, by entirely different techniques,
is given by Greene in (8].

In this note we prove that W, + W

1 > 4+ oo +wk5wr_k+ e +wr_2+w

r-l

for geometric lattices of rank r with equality holding for some Kk, s

1 <k < r-2, if and only if the lattice is modular. This provides some o
justification for the empirical observation that geometric lattices are i

"top heavy" and is not unexpected in view of Crapo and Rota's assertion (4]
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that "Roughly speaking... everything which 'happens' in a geometric
lattice also ‘happens' somewhere at the top of the lattice."
Our proof appeals to elementary linear algebra and Mdbius inversion.

The inequality is proved by showing that a certain set of wr + eoo + wr

k

vectors spans a (wo + ooe + wk)-dimensional subspace of a vector space

V(L) introduced in Section 3. These techniques also allow easy
derivations of the generalizations of Greene's results concerning
matchings of points to copoints (Theorems 2 and 3 of Section 5). 1In
Theorem 4 of Section 5, we give a further result to indicate possible
variations of the methods. A corollary of this result is used as a
lemma in a further paper [6] where the muthors give lower bounds for

W, 1in terms of W, &nd the rank r of a geometric lattice.

k 1

2s Preliminaries

Definitions and results required in the sequel are summarized
in this section. A detailed treatment of geometric lattices may be
found in [3] or [4].

A geometric lattice is a lattice L of finite height in which

x>y (x covers y) if end only if x =y Vp for some point

P f Y. Here a point is a lattice element covering the minimum element

O of L. The maximum element of a lattice L is denoted by 1, and
3 a copoint is a lattice element covered by 1.

The rank function p of a geometric lattice L 1is uniquely

determined by




p(0) = 0 and
p(x) = p(y) + 1 whenever x>y,

and satisfies the semimodular law

p(x) + o(y) > o(x Vy) + p(x Ay). (1)

A geometric lattice is modular when o(x) + o(y) = p(x A y) + o(x Vy)
for all x,y € L. The rank of L is the integer r = o(1).

For a <b in a geometric lattice, the interval
(e,0) = {x €L : a <x<Db} is also a geometric lattice. When

a <x<b in a geometric lattice, there always exist modular complements

of x 4n the interval [a,b], i.e., lattice elements y such that
XAy =8, xVy=b, and p(x) + o(y) = p(a) + p(b).

The MObius function [12] of a finite lattice L 1s the integer-

valued function u = W, on L x I with the properties

w(x,y) =0 unless x <y,

p(x,x) =1, and

z u(x,z) =z u(z,y) = 0 whenever x <y.
x<z<y x<z<y

From these properties follows the principle of Mobius inversion:

Given functions f,g from L into an additive abelian group,

£(x) =z g(y) for all x implies g(x) ='2 w(x,y) £(y),
>x X

and  £(x) =ZN e(y) implies g(x) =§Wu<y,x) £(y).

We shall require the fact [12, Thm. 3] that for a geometric lattice,

w(x,y) #0 for x<y.




&

In [5, Lemma 2.2], Dilworth showed that in a modular gecometric

lattice, wk = wr-k for all k.

.
-
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3« A Vector Space

Given a finite lattice L, we introduce the free vector space
v(L) (over the rationals Q) generated by the lattice elements.
Formally, we may take V(L) to be the set of all mappings from L
into Q, with the usual addition and scalar multiplication. For each
lattice element x, let I € V(L) denote the characteristic function
of the singleton subset {x}, i.e.,

A if y=x
I0r) = by Cnarwise .

Clearly, the vectors {Ix : x €L} form a basis for V(L).
For each x €1, let Iy and K denote, respectively, the

characteristic functions of the subsets {y €L : y Vx =1} and

{y €L : y <x}. That is,
Iy = }‘ Iyandxx=z Iy.
yiyWw =1
The 1linear relations between the three sets of vectors ({I 1, o, b
[Kx7 are given in the following lemma in terms of the Mobius function
p of the lattice L:

Lemma 1. let L be a finite lattice. Then for each x € L, the

following equations hold in V(L):

T e e ——————




(1) 1, = z w(y,x) Ky
MENASS

(11) 3, = ) w1) K.
yiy>x

(111) weK = ) wlxy) Tye

yy>x

(iv) 1If u(a,l) #0 for all a €L, then

I = 7 A(x,y) Jy

Proofs. For (i), apply Mobius inversion to the definition of

For (ii), observe that

E wly,1) K = z w(y,1) z £

yiy>x yiy>x z:2<y

Y () sraAN I, =3,
g Yyiy>xVe

since

_ A 1f xVvz2 =1

Z (1) = [0 otherwise 3
yi1oy>xve

Applying MObius inversion to (ii), we arrive at (iii).

Assuming u(a,l) dis never zero, (i) and (iii) give




o= ) wee) k= ) MOV uay) g =) Aoy) I

asax a:a<x y:y>a Yy

Remark. With x = O in Lemma 1(iii) and O # a €1,

w(0,1) Ko(a) = ) u(0,¥) 3, (o),
¥

0 = y u(O,Y) .

y:era=1

This is one form of Weisner's Theorem [12, p. 351].

4, The Main Theorem

Theorem 1. For any finite geometric lattice L, the Whitney

numbers satisfy

w1+w2+ s +Wk5wr_k+ oo +wr_2+wr_l (2)

where r is the rank of L and 1 <k <r - 1. If equality holds

for some k, 1 <k <r -2, then the lattice L is modular.

Proof. Let U, be the subspace of V(L) spanned by the vectors

[Ix:p(X) <k} and let T:v(L) + U, be the projection associating to

each mapping L + Q of V(L) its restriction to the subset
{x €L : p(x) <k}. That is, T is the linear mepping V(L) -+ U,

defined by

mr ) = (=x if p(x) <k
L 0 otherwise




T
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Note that if p(y) <r - Xk, then

ey = ) Wi =o,
xexW=1
since x Vy =1 dmplies p(x) > p(1) + p(x Ay) - p(y) > k by the
semimodular law (1).

For each x € L with p(x) <k, we have from Lemma 1(iv),

I = ML) =) A6y) @) = ) Mxy) ).
y yap(y)>r-k

It follows that the W . + eeo + W o + W vectors {W(Jy):o(y) >r -k}

kK k3

span the subspace U which has dimension W

k o + wl + eoe + W. . Since

k

Wy =W, =1, the stated inequality (2) is established.

We now assume that equality holds in (2) for some k, 1 CESY -2

Then, evidently, the vectors {TT(Jy):p(y) >r - k} form a basis for

k + 1, we have from Lenrma 1(iv)

n

the subspace Uy. For x €L with p(x)

0="mr) = Z Mx,y) Tay)
yin(y)or-k
end hence A(x,y) = O whenever p(y) >r - k.

Now x Ay =0 would imply that

0,x 0
X(x)Y) = E n(0,1 # 0.

Thus our assumption of equality implies in particular that x Ay > 0
vhenever p(x) =k +1 end p(y) = r - ke The proof of Theorem 1 is

thus completed by the following lemma.
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Lemma 2. Let L Dbe a geometric lattice of rank r and
1<k<r-2. If xAy>O0 vhenever p(x) =k +1 and ofy) =r - k,

then the lattice I is modular.

Proof. Consider first the case k =1, If L is not modular,
there exist elements x,y € L with p(x) + o(y) > p(x Ay) + p(x Vy).
The image of & maximel chain C in [x A y,y] wunder the order
homomorphism z #» x V z is then a maximal chain in [x,x V y) with
repeated elements, so there must exist three consecutive members

21622423 of C with szl<~x V22=sz3. We may therefore

assume without loss of generality (replace x by x V 209 ¥ by z3)

that p(x Vy) - p(x) =1, p(y) - p(x Ay) =2. Let c be a modular
camplement of x Vy in the interval [x,1] and' let £ be a
modular complement of x Ay in the interval [O,y]. Then op(c) =r -1,

p(L) =2 and
LAc=LAYyAc=LAYAXVY)Ac=LAYyAXx=0,

contrary to hypothesis.,
Consider now the general case. The hypothesis remains unchanged

if we replace k by r - k - 1, so we shall assume k < %r.

Suppose for contradiction, that L is not modular. Then there
exists a copoint ¢ and a line £ such that £ Ac = 0. Choose
z> 4 with p(z) =k +1 and put a =z Ac. We have p(a) < k.
There are two cases.

Case 1. p(a) <k - 1. Let y be a modular canx;lement of a in

the interval [0,c]. Then op(y) > r - k, and




zAy=2AcAy=aAy=0,
a contradiction.

Case 2. p(a) =~ ke Choose b >z with p(b) = 2k and let x
be a modular complement of 2z in the interval [4,b]. Let y be
a modular complement of b in [a,1]. Then p(x) =k + 1,

p(y) = r - k, and

i
o
)

XAy=xAbAy=xAa=xAzAc=4AcC

contrary to hypothesis.

5e¢ Further Results

Theorem 2. Let I be a finite lattice such that p(a,l) #£0

for all a € L. Then there exists a permutation f ¢ L - L such that
XVEY) =1

for a1 x € L.

Proof. By Lemma 1(iv), [Jx : x €L} is a basis for V(L). Hence

the matrix whose rows and columns are indexed by L, the entry in row x

and column y being

s M xVywl
Jx(y) = { 0 otherwise ’

is nonsingular. Some term in the determinant expansion does not vanish,
i.e. for some permutation f of L, Jx(f(x)) =1 forall x €L.

(Note that, necessarily, f(0) =1 and f(1) = 0.)

T Y T
}
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Remark. The inequality of Theorem 1 is an immediate consequence
of Theorem 2 since for a geometric lattice L, f maps elements of
rank < k injectively into elements of rank > r - k.

By applying Theorem 2 to the dual lattice £ , wWe have

Theorem 2°. Tet I be a finite lattice such that p(0,a) £ 0
for all a € L. Then there exists a pernutation f* : L +L such
that £7(0) =1, £ (1) =0, and x A £*(x) =0 for all x € L.

This answers affirmatively a conjecture of D. G. Kelly [10] that
the assertion of Theorem 2 holds for geometric lattices.

An example of a non-geometric lattice for which Theorems 2 and 2*
apply is the lattice of faces of a convex polytope, where u(E,F) is

(_l)d:im(F)-dim(E) for faces E <F.

Theorem 3. Let I be a finite geometric lattice of rank r and

0 <k <r. Then there exists an injection
g:{x€L:p(x)<k}>{y €L : ply)>r - k]
such that x < g(x) for all x in the damain of g.

Proof. With the notation as in the proof of Theorem 1, we have

seen that [TT(Jy) : p(y) > r - k} spans the subspace U _. By Lemma 1(ii),

k.

z u(z,l) "(Kz)
z:z>y

()

so evidently (T (xz)

p(z) > r - ¥} also spans Ug. Hence the matrix

whose rows are indexed by {x €L : p(x) < k] and columns by

{y €L : o(y) > r - k], the entry in rov x and column y being

——————————




gl at X<y
K&(x) & {O otherwise

has rank equal to the number of rows. The existence of the injection

g now follows, since some maximal square submatrix is nonsingular.

Remark. From Lemma 1 and with T = {y €L : o(y) > r - k},

u(0,1) 1, = Zyer w(0,) T(a,) = ZZQN g 0N 1) M),

The coefficient of p(0,1) W(Kl) in this sum is E: uw(o,y) = uL,(O,l)
yEr

where L' is the k-th truncation of I, i.e. the geometric lattice
obtained by identifying all clements of L with rank > r - k. 1In
particular, the coefficient of W(Kl) is nonzero. This remark can
be used to see that in Theorem 3, the 1njection g can be chosen so
that g(0) =1 (whenever k < r).

For a geometric lattice L, let Topk(L) and Botk(L) denote,

respectively, the sum of the top and bottom k + 1 Whitney numbers

of L, i.e.

Botk(L) =Wy + Wy +oeee v W,

Topk(L) =W +W .+ e +W ,vhere r = rank (L).

1

Theorem 4. Let 1L be a finite geometric lattice of rank r and
fix a €L with po(a) <r - k. Then
Top, (L) > Top, (L) - Top, ([a,1]) + Bot, ([a,1]) > Bot, (L).

Proof. Applying Theorem 1 to the geometric lattice [a,l], we

have TOpk([a,ll) > Botk([a,l]) and the first inequality follows.

o
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For z € L, define

Kk, = X I € (L),

x:xVa=z

Then whenever y > a in I,

K=ZA. (3)

To prove the second inequality, it will suffice to show that the set

of vectors

S = {U(Ky):p(y) >r-k y$all {W(Az):p(z) <p(a) +k, z>al

spans the subspace U of V(L). From the proof of Theorem 3,
{Tf(}’y):p()’) >r - k} spans Uy, 80 it remains only to show that
TT(Ky) is in the span of S for y > a. But this follows from Eq.(3)

aebove and the observation that the semimodular lew (1) implies TT(AZ) =0

whenever p(z) > p(a) + k.

With k =1 and a taken to be a point, we have the

Corollary. In a finite geometric lattice of rank > 2, the number
of lines (rank 2 lattice elements) on a given point plus the number of
i copoints not on that point cannot be less than the total number of

points.
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